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Knowledge Tranamission, and Acquisition:

Cognitive and Affective Considerations

Warren Page
Rev York City Technical College

Brooklyn, New York 11211

Introduction

College mathematics education will be further challenged in

the 1981's by demographic changes, the enrollment' of

nontraditional students (older people, for example), and by

society's inavitable demands for increattd mathematical knowledge

and, competence. Thus, -Bev initiatives for teaching widely

differing student populations must be found and explored., Th%

mathematical knowledge bases required to :keit the scientific,

technical, vocational, cultural, and functional needs of such

varied studeptpopulations must also be closely examined. But

without proper focus WW1 our approaches to these issues will be

inadequate and the benefits will be ephemeral.

What is needed now is a revolution in LAtellectuil,

philosophical! and social perspectives - perspectives which

reflect the very dramatic changing nature of the mathematical

enterprise. Indeed, it is my belief that:

(I) College mathematics education, and in particulat the

mathematics training. of TEMP - career students, must be made

morceffective. Knowledge acquisition must be embedded into, and

integrated with,, knowledge utilisation in order that learning be

functional and relevant.

*TIM Technology, Engineering, Mathematical sqltinces

(including computer science), Physical science.
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(II) Ilew, metacognitive educational considerations must be

explored and- given greater.prOminence in order that student' be

able to parlay their current mathematics education and beginning

career status into productive future learning and professional

growth.

(III) Changes in perception, attitudes, and role models are

needed in order to realize (I) and (II).

- These beliefs reflect and interface with important aspects of

classroom instruction, artificial intelligence research, and

cognitive (including neurobiological) research. Unfortunately

these nodes of mathematical ende or are not as well interrelated

as they could be. Thus, it is my hope that this conference, and

this paper in particular, will help to stimulate further interest

in strengthening these connections.

In this paper. I attempt to (lociselyi) depict mathematical

4.1\
knowledge as the resultant vector whose components are

interactive processes such as the acquisition, representation,

utilization, organization, and management of information. For

each person, the coordinates of these component vectors are

individual-matrix dependent. Accordingly, mathematical' knowledge

should be thought of as a dynaic vector that grows and changes

orientation in ,one's intellecstunl space.

The instructional strateees advocated in this paper are

intimately intertwined with behavioral objectives, information-

processing, and styles of 1446.;;Jug. They are offered as general
44.

principles that can enhance mathematics instruction for all

students.. For TEMP', these approaches should be viewed as first-

order guiding principles that constitute, the logical

prerequisities and pragmatic basis for higher order

considerations - including, for example, metacognition and
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learning how to learn - that will be the focus of a forthcoming

paper in progress.

New AM4t0110115

The present crisis in college mathematics instruction is not so

much one of "what specific course content and to whom it should

be taught' as it is a reflection of continued failure by the

mathematical community to properly communicate what mathematics

is and how it can be of value to different, changing student

populations! This is sine qua nont Without such understanding

and guidance, students. will find easier or more rewarding

academic disciplines'beckoning, why bother with mathematics and

its demands?

Most high echool*students and college freshmen are, curriculum

captives insofar as they must usually complete certain

mathevatioal course requiremeLits. But given their first

opportunity to make choices, college sophomores and juniors

increasingly vote to abandon mathematics by enrolling in other

courses of study (32). As adults, they'll also vote with their

political and financial influence. These votes have ominous
implications for the future concerns and allocation of resources

for college mathematics education.

The first two years of college mathematics is particularly

crucial for influencing and partially reversing these voting

patterns. However, new perspectives and attitudes are required

to bring about such changes. Indeed, it is ay belief that tte

1. '...the number of Native Americans, Hispanics, Crrientals
Mormons, and Seventh Day Adventists are all increasing-rapidly.'
*many surge of new enrollments during the next two decades in
higher educaticwwill be led by minorities, particularly blacss
and Hispanics.* °In most community colleges today, the average
age of students is thirty -six and climbing.' For further details
and a demographic portrait of students in the 1990s, see MI.
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two most ci itical factors in teaching mathematics concern "what"

one conveys and l'how*-commtuiication takes place. Both factors

are intimately intertwined with. informationprocesaing and

learning: each has affective as well as cognitive dimensions.

"What° one communicates in mathematicsAnetruetion
transcends the elucidation of mathematical concepts, the

teacher of mathematics also conveyer (consciously and
unconsciously) a great deal to_students about the
intrinsic nature and: value of the disCipline,itself.
Students' impressions and attitudes about 'Mathematics play

an important role in,their motivation (therefore,

. commitment and peraevetence) and ultimate success or

failure in mathematics courses.

Thus, effective mathematics instruction must begin by making

students want to study mathematics.

GP

"Sow" one communicates in mathematics instruction goes
beyond the exchange of ideas and information. Classroom (W
learning ezp*riences and attitudes give rise to long- s

lasting psycholosocial va.ues on what it means to do
mathematics and who should do it.

Implicit in each of these factors is the realisation that

effective learning is rarely possible if teachers of mathematics

cannot introduce end develop concepts in a manner commensurate

with their students' information- processing abilities and levels

of understanding. This realisation subsumes an awaiiieas of the

fact that a large constellation of behavioral patterns may be at

work in piedisposing students to success or failure in their

mathematics courses, particularly so at the basic skills level.*

2. In allindsOape And Science Theories" (111, $aruyama uses
the term nindsnen to mean la structure of reasoning, cognition,
perception, conceptualisation, design, planning, and decision
making that may vary from one individual, profession, culture, or
social group to another.' Be distinguish-el four pure mindscapes
and their combinations, and illustrates their aspects at the
overt, covert, and abstract levels.

0. J. limey administered psychological tests to university
students over a number of years. In f73, he identified four
epistemological types and their distribution among first-ear
university students

6



Teachers of mathematics must' appreciate individual (GP
differences and understand how psychtrphysio-social factors
Aspect on .styles of learning.

In this vein, it is singularly important for instructors to

realize that they too have their own cognitive preferences. The

types of exams they prefer and develop, for instance, reflect

their own cognitive styles and not necessarily those of their.

students. Thus, students' success tor failure) may not' depend

oaly on course content, but may also be related to the

information- presenting strategies and instructional demands of

their teacher. People do learn to learn differently*

Instrrrional procedures which may be beneficial to some students

can disadvantage and be counterproductive to other groups of

students. Behavioral differences =AI be taken into

consideration,2 if people having different styles *yearning are

to interact fruitfully? A few sample examples suffice to

illustrate this point.

The quality and quantity of interaction in the classroom are

important ingredients for learning. 4While some students prefer,

and_do better, 'Irking alone, others learn beet through some form

of give-and-take. The nature of interaction. conducive to

learning will vary according to the student's background and

psychological profile. Since setting, ambience, and interaction

are Interrelated, it is not immediately clear if

studontsiciaseroon inactivity result from culturally-related

3. An appropriate modification:B. T. Hairs statement (6) ill
most instructors are only dimly aware of the-elaborate and varied
behavioral patterns-which prescribe our hand3ing of time, spatial
relations, and our attitudes toward woe play, and learning.
Accordingtg, we insist that everyone el, e do things our way...
and those o do not are often regarded 44$ °underachievers,*
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reasons, beiause they are conscioualy for unconacieue141)

separating and disinveating themselves, from .classroom

instruction, or because they feel anxiote and uncomfortable in

the educational environment! instructors alert to these aces

can enhance learning through classroom-teaching strategies that

are appropriate to their students' behavioral needs. (Par

examples of student-student and teacher-student interactive

strategies, see (133, (143, ROW

Unfortunately, most instructors require that all students take

the class exam at the same timo, despite the fact that

individuals learn and grow at different intellectuil rates.- This

requirement clearly stacks the odds against the slower learmirs

as well as those who (appreciating time other than as a

pteciously dwindling commodity? have not yet learned to plan

sufficient time for study. Exam grades for these out of phase

students do not reflect their actual subject mastery once such

,students hive caught ut. Accordingly, their final grade - based

on grades which reflect their states of unpreparedness - may not

be commensurate with their knowledge at the end of the course.

e*This disadvantage can be diminished, If not eliminated, by

4. Styles of participation conducive to learning also vary
with culture. North American Indians learn best through
observation. Oriental students seem to do Well without heavy
emphasis on classroom participation. Americans generally require
more interaction than students from Anglo-French cultures, but
not as much as !Wanly students.

S. Variations in the perception and.utilisatton of .time
betome evident as one mgver westword and southward from-bhe
northeastern part of the Oflited-States...-As a 'ruler however,
Americans think of Usti as ,berg ltneart-seguenbiali-and
quantifiable. 'It should take **time teams thlirmatecia41
we'll plan an exam for y date6 .0ther. cuLtuses,share,neither our
sense of urgency nor our immutable cuipartmentalisation of-times
it malkes more sense to disregard time constraints act work at
the job until it is completed WI it does to abandon one
un;inished task in order to begin a new sus.
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broadening the constraint of 'fixed day for an exam to 'fixed

pariod7 for that exams For example, students can be given the

opportunity to take one of three variants 'of the exam (test f,L.on

day Di for i1,213) during a fixed exam week. In this humanistic

context, examsexams can do more than attempt to subjectively quantifyi.-

leveled of understandings they can (and should1). be used as

pedagogical tools for .motivating and rewarding further learning.

For instance, students who did poorly on an exam will be highly

ytivated. to clear up specific areas of weakness if they are.

allowed to take another variant of this exam (during its fixed

teat period, for example)-in which case, their overall' grade for

that class's exam is the average of the two exams taken. For

another variation on this theme (15), students can be made aware
ti

of the fact that each class test 011 contain one arbitrarily

chosen problem from each of the preceeding class tests.
Nano

Knowledge Tranimission and Aquisition

The notion of learning has a wide range of interpretations
.

among people - both in terms of what "knowledge' means and what

is requiretto reach that state of knowing. , Unfortunately, far'

too many students view mathematics as a lifeless body of facts

and formulas to be memorised or stored for abort -term, cued

recalls doing mathematics is too widely interpreted as concept-

identification, formula substitution, symbol manipulation, .and

problem solving in a Very narrow, artificial domen. Why is this

so? Why have so many students lulled into these

misconceptions, and how can we help them to better appreciate

what mathematical knowledge means and what is required to reach

that state of 'mewing?

Each of the above questions must have a multiplicity of

answers. But surely what instructors expect and demand of
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students is pivotal. Thus, we must accept the responsibility for

this imprinting and.lie.mdet take the initiative for bringing

about sum! very fundamental changes in our students' perceptions.

.A1 necessary first step is'to make it convincingly clear that
S.

Knowledge acquisition does not it knowledge utilisation.

Just being able to identify a geometrilffigure (say, a

rhoklus) reveals nothing about the intrinsic properties 'of that

figure. And Symbolic manipulation without understanding is only

slightly more meaningless than solving a trivial var4ant of the

same problem for Uzi) twentieth time. That such superficial forms

olknowledge are minimally functional can easily be demonstrates,

and must be driven home, by instructors. It is ale° very
61

important to alert students to the impact of a powerful anxiety

reducing drug, commonly called !pocket -calculatof.' It alleviates

students' motivation to learn by making them feel that they can

use it to solve all their mathematiCs problems. This myth is

also easily dispelled. For examples

'retails" lm Enter any number xvo on your calculator and

repeatedly use thef key. What do you get? Why?

21Ablim 2. On your calculator, enter 2 and take 4""

Continue to repeat this pattern of adding 2 followed by taking r.
.

what do you get? Why?

Problems which can be posed, but not solved, by a calculator

are effective for demonstrating to students that their head-held

calculator is much more powerful than their hand-held calculator

and that although calculators can be helpful for conput?ing, they

should not be antidotes for the headache. of having to think.

Dispelling students' myths is not enough. There still remains

the question of how to help them appreciate mathematics as a

10
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dynamic and multilayered activity richly rewarding and

e evolving synergism of process and product. This we now consider

in greater detail.. .
In most iastances mathematics instruction is considerably i

more effective when ,several modes of perception, are used - as may

be the case, for example, whei (left-hemiiph4rically oriented) -
technology students and, say, (more right-hemispheric). humanities

Galmajors are in ,,the same . Thus, both the symbolic-analyticscurf
approach and the visospatial-relational approach may be used to
prove (Figure 1) -tacit , "the geometric series lti+*+
converges t9 2

Q

L

44.4,y44.
fiS = Moolf+ya+ .
92s al I

S ID2-

y2.

Figure 1.

c

wommamsmammkoirmaipookalaMa
OD

/hi, S
lot

SsSsi4011.*/3+94.e...
1

rug codisitotigas S)S.

In the Same spirit, analytic proofs (viz, converging-series
tests) that the-harmonic series diverges may be sUpplemeited
with, or made more plausible by, following a (right-hemispheric)
analogical tact as in Figure 2.

6. Today, it is well known that there exists major
differentiations of functions between the brains left and right
hemispheres. In the most simplistic terms,. left-hemispheric
thinking resembles the discrete, sequential processing of a
digital calOulator: right hemispheric thinking simulates the
concurrent, relational activity of an analog computer.

7. Cohen (2), Di found that white middle-class children tend
to be analytical in orientation, whereas Chicano and black
children tend to be rational. She also found difference in
orientation among professions (411.
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Be all kncw thatItiguilwah can ad (and usually is) proved by

induction. But; as is Otte.: thi case, sudenta feel cheated:
O

"here, induction is an accessory after Use fact. Ow did-one

know the formdla,to be verified in the first place?",

Instructors, of coursa, can invoke Gauss' (more rights-

hemispheric) relational approach to obtain.the aforementioned

conjectured formula for verification (Figure 3).

0

1+24144 eqtalls 5r 6 * or ;(54.1)

1°142.644546 equals "3 pairs or or 1(64,i)

*Figure )*

One can also obtain ak is It 11.11/7. by counting

in the right triangle of Figure 4. (The rigkt triangle
when reflected with respect to its hypotendse, produces

of dots plus an extra superimposed diagonal.
0

if kis fist n , Figure 4 also illustrates some of the
sot
visually- induced proofs of other known results 121].

10.

0 040
likeoisZt
V% lot 411i

09

nirits 4.1kiv. ft«
ignab

Figure 4.
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8iWce pictures are usually more easily' recalled than

procedures, visual portrayals of algebraic processes can enhance

the retrieval of information. Synthetic division and synthetic

multiplication (10] offer two good illustrations. The point

'ming emphasised is:

Multimodal representation of concepts can do more thaw
convince students of concepts' veracity; they have the v.
potential for synergistic learning - as, for example, when (0124
concepts are introduced by one modality and students are
asked to finds representaions/proofs in other modes of
thought.

But let's not stop here! This leads in a natural manner t.%. a

whole new dimension of thinking. An example or two suffines to

make this clear.

1. Having symbolically demonstrated that 8 m 2 (Figure 1),

the author was surprised to see that some students felt tricked

and less than convinced of this result. 'Tow did you know to

multiply by 1/2 and then subtract?' 'Where did the whole series

disappear to?" Interestingly, the visual proof- stumbled upon

during class session - was perfectly acceptable to everyone. A

few additional remarks, between pauses, began to lead students to

a new awareness. it soon became clear that our visual proof was

also 'an accessory after the fact.' Bow, after all, did I know

to begin with a 1 x 2 - sired rectangle in the first place? The

symbolic proof was also challenged as being bogus since it too

was based on the aprioi knowledge that 8 was a finite number.

Next, We also discovered that the same algorithmic process can

produce meaningful rs well as meaningless results (replacing the

ratio '1/2' by "r" for r>l, we still obtain aa Vt-0), and that

algorithmic, existential, And constructivistic tbibking are

intimately interrelated. Finally, it was intuitively clear that

the analytic proof generalises much more efficiently than a

13



geometric one to arbitrary converging geometric series.

(Students may enjoy attempting a visospatial-proof, or they can

refer to the author's discovered generalisation (17)4

2. Given the motivation and opportunity to experiment, even

the weakest students will quickly discover that the distributive

multiplication depicted below

a.+ = ,49 1,044
a.

at +at + Pct.&

d.

to 404+44 4. id.

Figure 5.

is the representation that can best be extended to the multip:

lication of zaultinonials.

3. A few well-selected examples made it clear that Gauss'

combinatoric approach (of using pairs of numbers) had greater

potential for adaptation to other contexts than do dot proofs,

but it was not as pervasive as mathematical induction. (Here was

the beginning of a new appreciation and respect for induction.)

Comparing and analyzing the efficiency, extendability, and

generalirability of representations is an important first step

toward developing the types of awareness students will need in

their algorithmic and computer-related matlematics learning.

Mee, for example, 19).)

Experimenting with alternate modes of representatioh-can also

be stimulating and informativdtto instructora. Figure 4, for

example, yielded a newly discovered visual proof by the author of_

14



the fact that thit mg a tan Li tja n lagrait An arithmetic
szaszasiiiim aim zi Liana the iliflOrenct =ULU flat shim at that
mut n wan al mut progression! "y examining the v rious

representations students use, we can better judge how we 1 they

understood the concept in question.'

Embedding concepts in processes can help students appreciate

mathematics as a dynamic and multilayered activity - an evolving

synergism of process and product. These perceptions must begin,

so to speak, at the molecular level. Numbers, variables, shapes,

formulas and equations, as well as, other such basic entities,

must not be perceived as passive, static notions, but rather as

interactive processes and actions. This impacts on how

information itself is presentee To use Barb Simon's analogy

[29].

A physician's knowledge of how to treat diseases is useless if

the physician can't tell when the patient has the disease. Thus,

a large part at medical knowledge consists of condition-action

pairs; the condition being the disease symptoms, and the action

being the appropriate treatment.

8. If the dots on the hypotenuse of the right triangle are
labeled se and all other dots on the trapezoid are labeled *dm
then (since the dots on the triangle plus the dots on the square
comprise the dots on the trapezoid] (101.1) +104 sarn(o.+114)

9. Greeno (51 offers three general criteria for judging th-i
degree of understanding of a represented concepts internal
coherence of the representation, its. connectedness to other
relevant knowledge, and bow accurately it captures the concept's
essential features.

10. Too many students think of a variable x as being a fixed
unknown (rather than as an actively ,.roaming entity. -.an operator
whose character changes depending on where it is encountered in
its domain); formulas are perceived as receptors passively
waiting for substituted numbers (rather than as the algebraic or
visually portrayed embodiments of bow variables'relate to each
other); and equations are considered as .fixed states of
equilibria (rather than as reversible processes, where each side
eyeballs the other and can get there by an appropriate sequence
of transformations).

15



This is not the format of mathematics/science knowledge, in

general. We are much more explicit in enunciating principles

than in describing when and bow they can be applied. Formulas

and theorems, for example, do not always carry internal

information about contexts or situations that should evoke their

use. Greeno Ms is probably correct in, his impression that

"most teaching of algorithmic processes often focus al-most

entirely on the actions to be performed, with little attention to

the issue of when to perform. them." Matheizatics texts, on the

other hand, seem to assume that once students are shown a few

worked out problems, they'll be able to generate their own

situation-action responses for solving problems. This is not

always the case, and even less so for students in their earlier
ss

college mathematics courses.

The point being stressed here is that every important

mathematical result should be presented as the action component

of condition-action pairs. For such a "production,' the

conditions needed for the result to apply are bui:4 into the

presentation. In broader terms:

11. For instance, knowing that x6 ge 1 is useless in Problem 1
if students don't realize that Or 0.e. Knowing how to solve
quadratic equations is useless in Problem 2 if students don't
realize that y can be expressed asylm 2 + y,. Pinally,--Ittidentiv-knowiredge of the Pythagoreantheorem is useless they cannot Zak it in aipropriate .situation4
(Problem M and, they attempt ,to apply it to inappropriate con:texts (Problem 4.

=lama, Using only a compass, measure 1ff lengthiti along AB.
!Solutions Mark off D-on AB such that AD it
then CD fE Mark off K on AD such that AZ oata then CB

16



Every key notion and every important principle should not
only be considered in terms of its intrinsic properties,
but also as the 'basis far solving a primitive class of
problems.

00616 T° ,ivi

As

lio..1°41' I;

Figure 6.

:re),

A nice illustration of this principle is An Agproach to

Problem-Solving Using Equivalence Classes Modulo n" by J.E.

Schultz and X.F. Burger 129].

There is another important pedagogical facet to MMIA,

namely, the manner in which this type of thinking and awareness

can be broadened to solve problems. Indeed, it is well known

that the manner in which a problem is described is of critical

tzportance in determining how easily the problem can be solved or

whether it can be solved at all.

Problem 4. Find the length

of hypotenuse a.

Figure 7.

Problem 5. Find the area of the

parallelogram plus

the area of the square,

Figure 8.

Attempts to solve Problems 4, 5 corroborate the findings of

research experiments; subjects don't ordinarily search for the

most efficient representation of the problem; they tend to adopt

17



the representation of the problem from the language of its

statement? Thus, as Simon points out 1311, it shodld be clear

that:
Instructors need to help students improve their skills in
reformulating and restructuring problem representations.
It is most important to make students understand. .that the
value of their mathematically-related career skills will, (OF)1,

in large part, depend on their ability to recognise and
construct contexts that evoke appropriate mathematical

'principles and processes,

As the instructional dual to OUns, where principles Merved.as

'seekers' of conditions and contexts where they apply, problems

can serve as 'attractors" for as many distinctly different

solutions as possible.

oliOttS

01°
IGt

490

c,k\ /
e%

PROBUEME*1"1-w7-

Figure 9.

An especially nice illustration of this is J. Staib's "Answer

Finding Versus Problem Solving" 1321, where the class discovered

nine different ways to find the distance from a point to a line.

Also see "Convexity in Elementary Calculus: Some Geometric

Equivalences" 11), and Pedersen and P6lya's 'on Problems with

Solutions Attainable in More Than One VW 1251.

12. In Problem 4# theta se' c equals 1 since the other
diagonal of the rectangle Is the radius of the circle. If the
"parallelogram' and the !square' (in Wertbheimer's Problem 5) was
restructured as overla log right triangles of base a and height
b, the desired area is tely seem to be uh.



The perception of objects, systems, and processes vary

considerably amongst people, and this has tremendous bearing on

bow mathematical notions are perceived and utilised. This is

especially true in the classroom. As teachers are expounding on

mathematical notions and prinziples, students are busily

concocting their own idiosynchratic versions based on their own

consistent private logic. Such cognitive misinterpretations,

however, are not confined only to developmental mathematics

students or to those whose backgrounds do not reward clear and

precise thinking. In the margins of Bourbaki's advanced level

texts, for instance, the roadway danger signal 2 (cautions) is

followed by elaborative comments designed to help prevent readers

from making wrong interpretations that are consistent with the

antecedent exposition., The point being stressed here is that:

In presenting information, et is vitally. important, for
tebchers to anticipate and preempt students' IGP4
misinterpretations.,

The instructional strategies summarized in (GPI (GP), can

help teachers monitor, and become more attuned to,- the nature of

these misinterpretations. To the extent that we examine,

analyze, and modify our instructional strategies, we gain a

higher. form of instructional knowledge and an increased capacity

for becoming better Imparters of knowledge.

There are also important information management considerations

for the acquirerera of knowledge. Consider, for instance,

students who do well on homework assignments or quizzes covering

each specific aspect of a problem situation but still do poorly

on exams where they are no cues as to which solution strategies

to apply to the problems as a whole. In short, they lack certain

aspects of control knowledge (that is, information management).

Other manifestions of deficiences or weaknesses in control
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knowledge includes incorrect or incomplete categorization of

problem protoypes, lack of coherent knowledge structure and

organization, inability to recall or retrieve information,

nonassessment of concept attainment, and disregard for solution

verification.

There are many strategies for helping students to overcome

these deficiences. A contextually-representative sample might be

the followings

. CIAAAX1122 mi.. " Without actually solving problem .P,

carefully describe and/or set up in as many different ways as

possible how to obtain the answer to P.'

Homework Aluagnatatit. 'Compare and contrast the types of

problems (and how they are solvedi) in this chapter with those in
i

Infauctima diaMailliianA. *Row do you know that your method

is correct? Your answer is reasonable? 11

Term pa re or course= elated auditsiti6 'Summarize the

chapter's (course's) frey concepts and principles, and be sure to

discuss or depict their interrelationships.' (See, for example,

1261, (27).)

Realistic rya BadAla '...Okay,, I'll try to solve and

analyze this mathematical problem you've encountered in the

physics lab (on the job, for contest X, ), I'm not really

sure where to begin...Buppoise we first attem",..because R

13.4 In 'Questions in the Round - An infective Barometer of
Understanding' [14], the instructor proceeds around the room
requiring that each student either ask a question (to be answered

by the instructor) or else be asked a question by the instructor.

This strategy provides an excellent opportunity for instructors

to ask questions of control knowledge.
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Ths most effective strategy, however, is to sake I'M:dents

realise that while it is natural to form misconceptions and make

errors, specific actions for their detection and analysis are

also important mathematical activities. We must demand, and

students must be made to appreciate, that verification and

analysis are necessary in doing mathematics. Thus:

Control knowledge must be appreciated as being an integral
part of knowledge acquisition aid accumulation.

It seems clear that both teachers and students can receive and

impart important types of knowledge from each other. Accordingly:

Teachers must invite and encourage students to be
responsible partners in an interactive collaborative (01,4
learning environment.

. Interactive and collaborative aspects of (GP) have already

been considered earlier. The invitation I urge is not explicit

in nature, but rather implicit in the way we teach and do

mathematics in the classroom - manifestations,aoto speak, of

being "great teachers* in the sense' of J. Epstein's edited volume

of essays untuil gaxtzsmult sg swat /mu= (22]:

'"What all the great teachers appear to have in common is a
love.of their subject, an obvious satisfaction in arousing
this love in their students, and an ability to convince
them that what they are being taught is deadly serious.

The most natural .embodiment of (GP)9 is for teachers to guide,

assist, and/or collaborate with students in actually doing
mathematics that has meaning to them. There are many ways to

proceed, depending on the students' capabilities and levels of

mathematical sophistication,

BatibmmaJii,sumblams mulau and aimaa hive Uwe popular

since antiquity, 4their-lhautionS-have-Gentribptedsluchte-the---

development of modethaathematics. Thus, Leibnitz appears to



have been correct when he said, "Ken are never so ingenius as

when they are inventing games." Recreational mathematics and

examples from everyday life always stimulate students' curiosity

and whet theft intellectual appetites for more.

gamin liwthemmt*41 usestLim can be fascinating. Combining

and interlacins novel ideas from diverse areas of mathematics (as

distinct from applying mathematics to other disciplines) is a

beautiful way to impress students with the fact that mathematics

is indeed a coherent, harmonious whole.

MASJUNRAIJAUL1 LAJUULLAU cannot fail to convey the

challenge and excitement of attempted discovery. Fruitful

research exists at all levelejl The rewards of successful

research - giving an invited (classroom) lecture, seeing one's

results(s) in publication, and other forms of peer

acknowledgement{! can be the biggest payoffs and reinforcers for

students to stay invested in the study of mathematics.

Concluding Remarks

Finally, as we began, let us pause to reflect on where'

college mathematics could be beading. To the extent that we

succeed in going beyond changing our students' votes and actually

imbue our more capable students with positive perceptions of

(and feelings toward) mathematics, we increase the likelihood

that the focus of mathematics instruction w111 not only be as a

'seeker" of contexts and domains of application, but will also

14. Pot examples of mathematical research that can be
-uhailtireillif,--or-shared with, students in their earlier years of
college mathematics, see MU, geometry), (i21) , precalculus).
([19], calculus), (IMF number theory), MU, statistics),
(1221 and 124j, general).



become an 'attractor' for significant contributions from many of

these serviced disciplInes. Mathematically competent and well

predisposed students entering careers in computer science, the

social and biological sciences, and the humanities will most

likely be more motivated and .better equipped to bring their

expertise to bear on improving and enhancing mathematics

instruction.

By giving careful attention to the mhat, and hey factors of

mathematics education, college mathematics instructors can pXay

an important role in the evolving vitality and future growth of

mathematics instruction at all levels. It is not an opportunity

that should be cavalierly disregarded.
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